Modified large print test materials have an additional front cover for packaging purposes. Test administrators should ensure that this additional cover is removed before the pupil starts the test.
Key Stage 2

SCIENCE

Modified large print

Test ST002B

First name ____________________________________

Middle name ____________________________________

Last name ____________________________________

Date of birth Day ______ Month ______ Year ______

School name ____________________________________

DfE number ____________________________________

Note to markers:
This paper should be marked using the MODIFIED LARGE PRINT mark scheme amendments – MLP.
TIME ALLOWED
You have 25 minutes for this test, plus your additional time allowance.

INSTRUCTIONS
Write all your answers on this question paper.

For some questions, you may need to draw an answer instead of writing one.
1. Duck pond

(a) Peter goes to the duck pond with his grandad and his dog.

Tick **two** boxes to show two things that are true about a dog and a duck. [1 mark]

- [] They both have fur.
- [] They both move.
- [] They both lay eggs.
- [] They both breathe.
(b) Look at the diagram of a duck’s foot.

(i) Describe how a duck’s feet are adapted for swimming. [1 mark]

Two of the ducks come out of the pond.

The male duck has a bright green head with a white ring around the neck. The body feathers are light grey. The female duck has brown feathers all over its body.

Peter says, ‘Why do the two ducks look different?’

His grandad says, ‘The female needs to stay hidden when she sits in her nest.’

(ii) Why would the female duck be hard to see in a nest? [1 mark]

__

__

(iii) Explain why the female duck needs to stay hidden when she is in her nest. [1 mark]

__

__
(c) Peter sees some piles of soil on the grass near the pond.

Grandad tells him that the piles of soil are made by animals called moles.

Read the description of a mole.

A mole has small eyes, a furry coat, sharp claws, dark fur, a pointed nose and large front paws.

(i) Describe how a feature of the mole helps the mole to live underground. [1 mark]

Feature: __

How it helps: __

__
(ii) Peter says, ‘Why do moles live in soil?’

His grandad says, ‘To find earthworms to eat, and to hide in the soil.’

Which word can not be used to describe a mole?

Tick one box. [1 mark]

prey
producer
predator
consumer
2. Seed dispersal

(a) The diagram shows a flower cut in half.

Put a cross (X) on the diagram to show where the seed develops. [1 mark]

(b) Class 6 have collected different types of seed.

They blow the seeds with an electric fan.

This disperses the seeds.

They measure how far each seed travels.

What equipment can measure how far the seeds travel? [1 mark]
(c) The seeds can be blown by the children’s mouths or with an electric fan.

Explain why the electric fan helps to make the test fair. [1 mark]
(d) Here is a table of the children’s results using an electric fan.

<table>
<thead>
<tr>
<th>Plant</th>
<th>sycamore</th>
<th>apple</th>
<th>bulrush</th>
<th>oak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed</td>
<td>![sycamore seed]</td>
<td>![apple seed]</td>
<td>![bulrush seed]</td>
<td>![oak seed]</td>
</tr>
<tr>
<td>Distance travelled (cm)</td>
<td>76</td>
<td>27</td>
<td>149</td>
<td>0</td>
</tr>
</tbody>
</table>

The sycamore seed and bulrush seed travel the furthest distances.

They fall slowly from the plant so the wind has more time to blow them away.

Tick one box to show which features of the seeds help them to fall slowly. [1 mark]

- They are smooth and soft. []
- They have a large area and are heavy. []
- They have a large area and are light. []
- They are flexible and soft. []
(e) Name the force that slows the seeds as they fall. [1 mark]

(f) The children dispersed the seeds with an electric fan.

 The electric fan disperses seeds like the wind does in nature.

 Name one other way seeds are dispersed in nature. [1 mark]
3. Grass heads

(a) Class 6 are investigating how grass grows.

They grow grass on grass heads filled with sand.

They keep their grass heads standing in dishes of water so they do not dry out.

All plants need water to grow.

Name two other things that all plants need to grow. [1 mark]

_____________________ ____ and ________________________

(b) Some children give their grass head a hat.

They keep all other conditions the same.

The children predict that when the grass under the hat grows, it will look more yellow than the grass not covered by the hat.

Give one reason why the grass under the hat might look more yellow. [1 mark]

(c) Class 6 use a ruler to measure the height of the grass every week. The grass grows to different heights so it is difficult to know which piece of grass to measure.

Write yes or no next to each idea to show if it is a good way for class 6 to measure the height of the grass each week. [1 mark]

<table>
<thead>
<tr>
<th>Class 6 could measure the height of the grass by ...</th>
<th>Yes or no?</th>
</tr>
</thead>
<tbody>
<tr>
<td>finding an average length of several pieces of grass.</td>
<td></td>
</tr>
<tr>
<td>measuring the length of a different piece of grass each week.</td>
<td></td>
</tr>
</tbody>
</table>
(d) Some other children put their grass head in a sealed, dry plastic bag.

They keep all other conditions the same.

They observe that droplets of water form on the inside of the bag.

![Diagram showing grass, grass head, plastic bag, dish of water]

Tick one box to explain why droplets of water form on the inside of the plastic bag. [1 mark]

- Water condenses from the grass head and evaporates on the bag.
- Water dissolves from the grass head and evaporates on the bag.
- Water evaporates from the grass head and condenses on the bag.
- Water dissolves from the grass head and condenses on the bag.
4. Smallpox

(a) Smallpox and cowpox are diseases. People who catch smallpox can die.

Dr Jenner lived about 200 years ago. He discovered how to stop people catching smallpox.

He said, ‘I think that people who have had cowpox will not catch smallpox.’

(i) What sort of statement did Dr Jenner make?

Tick one box. [1 mark]

- explanation
- prediction
- comparison
- observation
(ii) Dr Jenner did a test to find out if his statement was true.

He infected a boy called James with cowpox.

James got better.

Describe what Dr Jenner must have done next and also describe the evidence needed to show that his statement was true. [2 marks]

__

__

__

(iii) Dr Jenner tested other people.

Why did Dr Jenner test other people? [1 mark]

__

__
(b) Not everyone had Dr Jenner’s treatment.

In 1844 many people died from smallpox.

The table shows how many people died from smallpox at different ages in London.

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Number of people who died from smallpox</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>226</td>
</tr>
<tr>
<td>20</td>
<td>240</td>
</tr>
<tr>
<td>30</td>
<td>98</td>
</tr>
<tr>
<td>40</td>
<td>43</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>60</td>
<td>19</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
</tr>
</tbody>
</table>

How many people who were 30 years old died from smallpox? [1 mark]

(c) Holly looks at the information in the table.

She says, ‘The younger the person the more likely they were to die of smallpox.’

Explain why Holly cannot be sure of her conclusion. [1 mark]

__

__

__

__

END OF TEST
Modified large print test materials have an additional front cover for packaging purposes. Test administrators should ensure that this additional cover is removed before the pupil starts the test.
Key Stage 2

SCIENCE

Modified large print

Test ST008C

First name ____________________________________

Middle name ____________________________________

Last name ____________________________________

Date of birth Day ______ Month ______ Year ______

School name ____________________________________

DfE number ____________________________________

Note to markers:
This paper should be marked using the MODIFIED LARGE PRINT mark scheme amendments – MLP.
TIME ALLOWED
You have 25 minutes for this test, plus your additional time allowance.

INSTRUCTIONS
Write all your answers on this question paper.

For some questions, you may need to draw an answer instead of writing one.
1. **Soil**

(a) Tom puts some soil and water in a jar with a lid.

He sees bubbles rising to the surface.

Complete the labels. Write solid, liquid or gas in each box.
[1 mark]

![Diagram showing a jar with a lid, soil, water, and bubbles.]

- **lid**
- **soil**
- **water**
- **bubble**
- **jar**
(b) Tom shakes the jar and then leaves it to stand.

After a day, the soil in the jar has separated into layers: sand, gravel and clay.

The gravel particles are the heaviest.

The clay particles are the lightest.

Draw **three** lines to match each label to the correct layer in the jar. One has been done for you. [1 mark]
2. Tearing paper

(a) Alice and Karim want to find out which type of paper tears most easily. Look at their plan.

Plan

1. Make a small hole 1 cm from the edge of the paper.
2. Attach a forcemeter to the piece of paper.
3. Pull the forcemeter.
4. Measure the size of the pull needed to tear the paper.
5. Repeat with different pieces of paper.
Alice and Karim put their results in a table.

Complete the table by writing the headings of the columns. [2 marks]

<table>
<thead>
<tr>
<th></th>
<th>_____________ (newtons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>paper tissue</td>
<td>2</td>
</tr>
<tr>
<td>tracing paper</td>
<td>5</td>
</tr>
<tr>
<td>newspaper</td>
<td>4</td>
</tr>
<tr>
<td>paper towel</td>
<td>3</td>
</tr>
</tbody>
</table>

(b) Tick one box to show which paper was most difficult to tear. [1 mark]

- paper tissue
- tracing paper
- newspaper
- paper towel
(c) Alice and Karim want to make sure their results are reliable.

Tick one box to show how the children can make sure their results are more reliable. [1 mark]

Use the same size of each paper. ☐

Test more than four types of paper. ☐

Test each type of paper three times. ☐

Draw a graph of their results. ☐

(d) Alice says, ‘It took 4 newtons to tear the newspaper. I wonder what will happen if I make changes to the newspaper.’

Complete the table below to show how the changes to the newspaper will affect how easy or hard it is to tear. Tick one box in each row. [1 mark]

<table>
<thead>
<tr>
<th>Change to newspaper</th>
<th>The newspaper will be ...</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>easier to tear.</td>
<td>harder to tear.</td>
<td>the same to tear.</td>
</tr>
<tr>
<td>use two sheets of newspaper (one on top of the other)</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>use a wet piece of newspaper</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>use a longer piece of newspaper</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
3. **Separating sand and salt**

(a) Class 6 are finding out about separating mixtures.

The teacher mixes sand and salt together.

She asks the children to separate the sand and salt.

They say, ‘First of all we should add water to the mixture of sand and salt and stir it.’

What happens to the salt when water is added to the mixture? [1 mark]
(b) The children say, ‘We should now pour the mixture through paper in a funnel to separate the sand from the liquid.’

(i) What is this method of separation called? [1 mark]

(ii) Describe how the sand is separated from the liquid. [1 mark]

The sand __

The liquid __

(c) The children say, ‘We should pour the liquid from the beaker into a dish and put it in a warm place for a few days.’

Tick two boxes to show what will happen when the dish has been in a warm place a few days.

Tick two boxes. [2 marks]

- The liquid will be less salty.
- Bubbles will be produced.
- The salt will melt.
- The water will change to gas.
- Salt crystals will form.
- A new material is made.
(d) The teacher mixes sand and iron nails together.

She asks the children to separate the sand from the iron nails.

Write two ways the sand could be separated from the iron nails. [2 marks]

1. __

2. __
4. **Pond depth**

(a) Ben’s class go to the school pond every day for five days.

At midday their teacher measures the depth of water in the pond.

The children measure the air temperature.

They always take the measurements at the same place.

<table>
<thead>
<tr>
<th>Day</th>
<th>Air temperature (ºC)</th>
<th>Depth of water (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td>Tuesday</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>Wednesday</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td>Thursday</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>Friday</td>
<td>12</td>
<td>55</td>
</tr>
</tbody>
</table>
Ben plots a bar chart.

Complete the missing axis label with the unit. [1 mark]

(b) On one morning it rained.

On the morning of which day of the week was it most likely to have rained? How can you tell? [1 mark]

Day: ____________________________

I can tell because ___
(c) (i) Heat is needed to raise the temperature of the air. Where does this heat come from? [1 mark]

(ii) Here is the table again.

<table>
<thead>
<tr>
<th>Day</th>
<th>Air temperature (ºC)</th>
<th>Depth of water (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>17</td>
<td>52</td>
</tr>
<tr>
<td>Tuesday</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>Wednesday</td>
<td>21</td>
<td>49</td>
</tr>
<tr>
<td>Thursday</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>Friday</td>
<td>12</td>
<td>55</td>
</tr>
</tbody>
</table>

Look at the table. Describe the pattern in the data between the air temperature and the depth of the water in the pond. [1 mark]
Ben’s class collect the rainfall in the school garden.

They could use jam jars or measuring cylinders.

(i) Write one advantage of using a jam jar. [1 mark]

(ii) Write one advantage of using a measuring cylinder. [1 mark]
5. Mountains

(a) Class 6 find out about processes that happen on mountains.

<table>
<thead>
<tr>
<th>Processes that happen on mountains</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Water vapour in the air cools down to form water droplets.</td>
</tr>
<tr>
<td>B – Water droplets change into snow.</td>
</tr>
<tr>
<td>C – Snow on mountains changes into water.</td>
</tr>
<tr>
<td>D – Water changes into ice.</td>
</tr>
</tbody>
</table>

Tick one box in each row to match each process to its correct name. [2 marks]

<table>
<thead>
<tr>
<th>Process</th>
<th>Name of process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>melting</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Modified large print test materials have an additional front cover for packaging purposes. Test administrators should ensure that this additional cover is removed before the pupil starts the test.
Key Stage 2

SCIENCE

Modified large print

Test ST012P

First name ____________________________________

Middle name ____________________________________

Last name ____________________________________

Date of birth Day ______ Month ______ Year ______

School name ____________________________________

DfE number ____________________________________

Note to markers:
This paper should be marked using the MODIFIED LARGE PRINT mark scheme amendments – MLP.
TIME ALLOWED
You have 25 minutes for this test, plus your additional time allowance.

INSTRUCTIONS
Write all your answers on this question paper.

For some questions, you may need to draw an answer instead of writing one.
1. Magnetic forces

(a) Ali has four different magnets and some paperclips. The paperclips are attracted to the magnets.

Draw one arrow on the diagram to show the direction of the magnet’s force on the paperclip. [1 mark]

(b) Name the force on the paperclip that pulls in the opposite direction to the magnet. [1 mark]
(c) Ali wants to find the strongest magnet.

He adds paperclips to a magnet one at a time so they make a chain.

He stops when no more paperclips stick.

He repeats this with the other three magnets.

How will Ali know which magnet is the strongest? [1 mark]
(d) The graph below shows Ali’s results. One axis on the graph has been labelled.

Write the label for the other axis. [1 mark]

(e) Ali moves magnet A towards magnet B. Magnet B moves away from magnet A even though Ali does not touch magnet B.

Why did magnet B move away from magnet A? [1 mark]
(f) Ali tries different ways of putting the magnets together.

Tick one box on each row of the table to show if the magnets move together, move apart or do not move. [1 mark]

The first one has been done for you.

<table>
<thead>
<tr>
<th>Magnets</th>
<th>Move together</th>
<th>Move apart</th>
<th>Do not move</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Electricity investigation

(a) Lena has this equipment:

1 switch
6 wires
2 large cells (batteries)
1 small cell (battery)
1 bulb

Tick three boxes to show which questions Lena could investigate using only the equipment given above. [2 marks]

Tick three boxes.

☐ Do different cells affect the brightness of a bulb?

☐ How many bulbs can be lit by one cell?

☐ Does the number of cells affect the brightness of a bulb?

☐ Does the number of switches affect the brightness of a bulb?

☐ Does the direction of cells affect the brightness of a bulb?
(b) **Draw four lines to match the electrical components to their symbols.** [1 mark]

<table>
<thead>
<tr>
<th>Electrical component</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>bulb</td>
<td>![Bulb Symbol]</td>
</tr>
<tr>
<td>switch</td>
<td>![Switch Symbol]</td>
</tr>
<tr>
<td>wire</td>
<td>![Wire Symbol]</td>
</tr>
<tr>
<td>cell</td>
<td>![Cell Symbol]</td>
</tr>
</tbody>
</table>
(c) Lena collected these wires.
The wires are made of different metals.

Lena says, ‘I want to know if the wires made of different metals will change the brightness of the bulb in the circuit.’

What must Lena do to the wires to make her test fair? [1 mark]

(d) Lena makes her test fair.

Tick **two** boxes to show the two pieces of evidence Lena should collect for her results. [1 mark]

Tick **two** boxes.

- [] how quickly the bulb lights up
- [] how bright the bulb is
- [] how many wires there are
- [] what metals the wires are made of
3. The solar system

(a) Joe is finding out about the solar system.

He writes four statements about the Sun.

Write true or false next to each statement about the Sun.
[2 marks]

True or false?

The Sun is a light source. ______________________

The Sun orbits the Earth. ______________________

The Sun is smaller than the Earth. ______________________

The Sun is a circle. ______________________
(b) Joe finds out that days and years take different amounts of time on different planets.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Time for one day (Earth days)</th>
<th>Time for one year (Earth days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>59</td>
<td>88</td>
</tr>
<tr>
<td>Venus</td>
<td>243</td>
<td>225</td>
</tr>
<tr>
<td>Earth</td>
<td>1</td>
<td>365</td>
</tr>
<tr>
<td>Mars</td>
<td>1</td>
<td>687</td>
</tr>
<tr>
<td>Jupiter</td>
<td>0.4</td>
<td>4329</td>
</tr>
</tbody>
</table>

Look at the table.

(i) Which planet has the shortest day? [1 mark]

(__)

(ii) Which planet orbits the Sun quickest? [1 mark]

(__)
(c) Joe says, ‘The planets with shorter days have shorter years.’

Look at the table opposite.

Do the planets with shorter days have shorter years?
Tick one box.

yes [] no []

Use the information in the table to explain your answer. [1 mark]

(d) All of the planets in our solar system have days and nights.

What movement in space causes day and night on Earth? [1 mark]

4. Investigating grip

(a) Andy and Jun have different ways of testing how well different shoes grip.

Andy’s plan

1) Ask someone to run around in the playground.
2) Time how long it is before they fall over.
3) Do the test again with different shoes.

Jun’s plan

1) Put the shoe on a table and tie string to it.
2) Add a weight to the other end of the string and let it hang over the edge of the table.
3) See how much weight it takes to move each shoe.

Complete the table below to show the units that Andy and Jun could use to measure their results. [2 marks]

<table>
<thead>
<tr>
<th>What will be measured?</th>
<th>What is the unit of measurement?</th>
</tr>
</thead>
<tbody>
<tr>
<td>how much time it takes to fall over</td>
<td></td>
</tr>
<tr>
<td>how much weight it takes to move the shoe</td>
<td></td>
</tr>
</tbody>
</table>
(b) Andy and Jun both plan to make their tests fair.

Suggest one reason why Jun’s plan is better than Andy’s plan. [1 mark]

Jun’s plan is better because ______________________________

(c) They decide to use Jun’s plan to test some shoes.

Shoe A Shoe B Shoe C Shoe D

Jun predicts that shoe D will have the least grip.
Look at the shoes.

Explain why shoe D is likely to have the least grip. [1 mark]
(d) Look at the table of results.

<table>
<thead>
<tr>
<th>Shoe</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight needed to move the shoe (units)</td>
<td>250</td>
<td>100</td>
<td>125</td>
<td>25</td>
</tr>
</tbody>
</table>

Do the results support Jun’s prediction that shoe D will have the least grip?

yes ☐ no ☐

Explain how the results support or do not support Jun’s prediction. [1 mark]

__

__

__

END OF TEST
Science sampling tests

Mark scheme guidance for modified large print and braille

May 2018
Summary

This guidance details the amendments made to the mark schemes for questions which have been adapted or replaced, in the braille or modified large print (MLP) versions of the key stage 2 (KS2) science sampling test materials.

This guidance should be used alongside the standard version of the KS2 science sampling mark scheme. You should refer to the standard mark scheme when marking the MLP and braille test papers, unless an alternative is given in this guidance.

Amendments to the mark scheme

Modified mark scheme amendments are only provided where the content of the standard mark scheme is altered.

Mark scheme amendments are not provided where the only change has been to further divide the question into subsections or where the layout of the question is different.

There are no amendments for MLP or braille 2016 science sampling tests papers 2B, 8C or 12P.

General guidance to be applied throughout the braille papers

- You should make every effort to understand what the pupil has written in an answer without reading into the answer anything that the pupil did not intend.

- Some pupils with visual impairment find it difficult to write their answers clearly. It may take you longer to read their answers. Apply the mark schemes but be sympathetic to their circumstances.

- Pupils with visual impairment find it difficult to draw accurately. They often use thick pens or pencils. You should make every effort to be fair in marking these questions and take into account what appears to be the pupil’s intention.

- Any unambiguous indication of the correct answer should be credited.

- Some braille questions are asked differently to the standard version but the differences are sufficiently small that you should still be able to apply the standard mark scheme. For example, pupils are asked to write rather than circle the answer.

General guidance to be applied throughout the MLP papers

- You should make every effort to understand what the pupil has written in an answer without reading into the answer anything that the pupil did not intend.
• Some pupils with visual impairment find it difficult to write their answers clearly. It may take you longer to read their answers. Apply the mark schemes but be sympathetic to their circumstances.

• Pupils with visual impairment find it difficult to draw accurately. They often use thick pens or pencils. You should make every effort to be fair in marking these questions and take into account what appears to be the pupil’s intention.

• Unless otherwise indicated in this document, there should be an increased tolerance level for all drawing and measuring.

• If pupils have missed any answer lines within the text, their answers may be elsewhere on the page. Any unambiguous indication of the correct answer should be credited.

• Tick boxes arranged horizontally in the standard version of the test may have been rearranged vertically.